3x^2+4x^2-4=180

Simple and best practice solution for 3x^2+4x^2-4=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+4x^2-4=180 equation:



3x^2+4x^2-4=180
We move all terms to the left:
3x^2+4x^2-4-(180)=0
We add all the numbers together, and all the variables
7x^2-184=0
a = 7; b = 0; c = -184;
Δ = b2-4ac
Δ = 02-4·7·(-184)
Δ = 5152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5152}=\sqrt{16*322}=\sqrt{16}*\sqrt{322}=4\sqrt{322}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{322}}{2*7}=\frac{0-4\sqrt{322}}{14} =-\frac{4\sqrt{322}}{14} =-\frac{2\sqrt{322}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{322}}{2*7}=\frac{0+4\sqrt{322}}{14} =\frac{4\sqrt{322}}{14} =\frac{2\sqrt{322}}{7} $

See similar equations:

| 19d-16d=15 | | 6t-2=118 | | 0=49/50n+1/50n-n | | 7=f/3+6 | | a/4(a+5)3=27 | | 5x*x=-6 | | 0.1(10)-0.1x+x=0.3(10) | | -33-7x=3(-x+1) | | q-3.7/3=1.93 | | 11x-105=5 | | 2x+8=x^2-4 | | 10h+20=250 | | 7x+2(10x+1)=-6x+(7x-10) | | 1.38=w/3-2.62 | | 5x+1+4x-10=180 | | 7w-(7/2)=-(3/2)w-(4/3) | | 4z+8.54=16.54 | | -6+5x+5x=14 | | 0+10x=55+25 | | (3/4)x-4=26 | | 25h+50=575 | | 2x+5+60=65 | | |-4+a|=6 | | (6d)+(6d)+(1.62735735+d)=180 | | 2X+12=|3x-31| | | 5x+3=10x-4.5 | | 15=3(2)+2(3)+s | | -33-7x+5x=14 | | 8x-1=-4+1+8x+2 | | -4(6-7n)=88 | | -4(x+5)+3x-1=−4(x+5)+3x−1=-13 | | 6x-157=12x-149 |

Equations solver categories